Agritrop
Accueil

Object-based image analysis for operational fine-scale regional mapping of land cover within river corridors from multispectral imagery and thematic data

Tormos Thierry, Kosuth Pascal, Durrieu Sylvie, Dupuy Stéphane, Villeneuve B., Wasson Jean-Gabriel. 2012. Object-based image analysis for operational fine-scale regional mapping of land cover within river corridors from multispectral imagery and thematic data. International Journal of Remote Sensing, 33 (14) : 4603-4633.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_563161.pdf

Télécharger (3MB)

Quartile : Q2, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q3, Sujet : REMOTE SENSING

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture

Résumé : Accurate mapping of land-cover diversity within riparian areas at a regional scale is a major challenge for better understanding the influence of riparian landscapes and related natural and anthropogenic pressures on river ecological status. As the structure (composition and spatial organization) of riparian area land cover (RALC) is generally not accessible using moderate-scale satellite imagery, finer spatial resolution imagery and specific mapping techniques are needed. For this purpose, we developed a classification procedure based on a specific multiscale object-based image analysis (OBIA) scheme dedicated to producing fine-scale and reliable RALC maps in different geographical contexts (relief, climate and geology). This OBIA scheme combines information from very high spatial resolution multispectral imagery (satellite or airborne) and available spatial thematic data using fuzzy expert knowledge classification rules. It was tested over the Hérault River watershed (southern France), which presents contrasting landscapes and a total stream length of 1150 km, using the combination of SPOT (Système Probatoire d'Observation de la Terre) 5 XS imagery (10 m pixels), aerial photography (0.5 m pixels) and several national spatial thematic data. A RALC map was produced (22 classes) with an overall accuracy of 89% and a kappa index of 83%, according to a targeted land-cover pressures typology (six categories of pressures). The results of this experimentation demonstrate that the application of OBIA to multisource spatial data provides an efficient approach for the mapping and monitoring of RALC that can be implemented operationally at a regional or national scale. We further analysed the influence of map resolution on the quantification of riparian spatial indicators to highlight the importance of such data for studying the influence of landscapes on river ecological status at the riparian scale.

Mots-clés Agrovoc : cartographie, analyse d'image, télédétection, bassin versant, couverture végétale, couverture du sol, paysage, classification, modèle, imagerie, imagerie par satellite, image spot, photographie aérienne

Mots-clés géographiques Agrovoc : Languedoc-Roussillon, France

Classification Agris : P31 - Levés et cartographie des sols
B10 - Géographie
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Tormos Thierry, CEMAGREF (FRA)
  • Kosuth Pascal, CEMAGREF (FRA)
  • Durrieu Sylvie, CEMAGREF (FRA)
  • Dupuy Stéphane, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0002-9710-5364
  • Villeneuve B., CEMAGREF (FRA)
  • Wasson Jean-Gabriel, CEMAGREF (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/563161/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-11-23 ]