Agritrop
Accueil

Quantitative comparison and selection of home range metrics for telemetry data

Cumming Graeme S., Cornélis Daniel. 2012. Quantitative comparison and selection of home range metrics for telemetry data. Diversity and Distributions, 18 (11) : 1057-1065.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_565788.pdf

Télécharger (1MB)

Quartile : Outlier, Sujet : BIODIVERSITY CONSERVATION / Quartile : Q1, Sujet : ECOLOGY

Résumé : Aim Home range (HR) metrics are widely used in ecology and conservation, but the quantitative basis for choosing and parameterizing metrics is weak. Home range estimates are ecological and statistical hypotheses that must balance type I and type II errors. Here, we present and test a new approach to fine-tuning and comparing HR estimates using the area under the curve (AUC) statistic. Location Test data are taken from telemetry studies of 44 individual ducks in southern Africa and nine buffaloes in southern and western Africa. Methods We use a meta-analysis of AUC statistics to compare the performance of four standard HR metrics on data from 44 ducks (two species) and nine African buffaloes. Results The AUC method emerges as a useful and accessible statistical tool. It captures clear differences between HR estimators as well as providing a way of fine-tuning parameters for an individual HR estimate. Code to run the HR AUC analyses in R is provided. As argued by others, we found that kernel density estimators offer the best combination of ecological and statistical validity, while estimators that use minimum convex polygons at any stage of the algorithm perform poorly and should be avoided. Main conclusions The AUC statistic provides a readily implementable and straightforward approach to comparing different HR metrics and to selecting parameters for individual metrics. It thus offers a valuable tool for conservation efforts that seek to define HRs for species or populations. The use of the AUC in this new context further contributes to solidifying the interface between species occurrence models and HR estimators.

Mots-clés Agrovoc : écologie animale, biodiversité, habitat, biogéographie, dynamique des populations, méthodologie, télédétection, mesure (activité), modèle mathématique, canard, buffle africain, conservation des ressources

Classification Agris : U10 - Informatique, mathématiques et statistiques
U30 - Méthodes de recherche
L20 - Écologie animale
P01 - Conservation de la nature et ressources foncières

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Cumming Graeme S., UCT (ZAF)
  • Cornélis Daniel, CIRAD-ES-UPR AGIRs (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/565788/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-01-18 ]