Agritrop
Accueil

Joint selection of wavenumber regions for midir and raman spectra and variables in pls regression using genetic algorithms

Grosmaire Lidwine, Maldonado Alvardo Pedro Gustavo, Reynes Christelle, Sabatier Robert, Dufour Dominique, Tran Thierry, Delarbre Jean-Louis. 2012. Joint selection of wavenumber regions for midir and raman spectra and variables in pls regression using genetic algorithms. In : 2012 EFFoST Annual Meeting, Montpellier, France, from the 20-23 November 2012. s.l. : s.n., Résumé, 2 p. EFFoST Annual Meeting (2012), Montpellier, France, 20 Novembre 2012/23 Novembre 2012.

Communication sans actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_567089.pdf

Télécharger (49kB) | Prévisualisation
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_567089.pdf

Télécharger (1MB) | Prévisualisation

Matériel d'accompagnement : 1 poster

Résumé : This work fits into the context of cassava processing. Production and consumption of this product is steadily increasing worldwide and especially in tropical regions where, after harvest, cassava starch is extracted according to an empirical process: natural fermentation and sun-drying, which gives to this product an interesting breadmaking capacity despite of the absence of gluten. The objective of this work is to try to explain the breadmaking ability from different parameters (physicochemical and spectroscopic data) using a statistical regression method while selecting variables of different types: individual and intervals. In chemometrics, the choice of explanatory variables is a problem often discussed, but, when it comes to select intervals, methodologies are rarer and more complex (Höskuldsson 2001). Among the specific methods developed (Norgaard et al 2004), Genetic Algorithms (GA) were chosen and combined with the PLS method to select intervals (Leardi 2000, Leardi and Norgaard 2004). In this case, the explanatory variables are organized in a multitable in which intervals and individual variables are selected in order to predict one variable of interest: the breadmaking capacity. To this end, we will use and adapt a GA developed in a context of discrimination (usual LDA), jointly with the PLS1 method (Reynes et al 2006), this method is called AGvPLSm.

Classification Agris : Q02 - Traitement et conservation des produits alimentaires
Q04 - Composition des produits alimentaires
U10 - Informatique, mathématiques et statistiques
F60 - Physiologie et biochimie végétale
F30 - Génétique et amélioration des plantes

Auteurs et affiliations

  • Grosmaire Lidwine, UM1 (FRA)
  • Maldonado Alvardo Pedro Gustavo, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Reynes Christelle, UM1 (FRA)
  • Sabatier Robert, UM1 (FRA)
  • Dufour Dominique, CIRAD-PERSYST-UMR Qualisud (COL) ORCID: 0000-0002-7794-8671
  • Tran Thierry, CIRAD-PERSYST-UMR Qualisud (THA) ORCID: 0000-0002-9557-3340
  • Delarbre Jean-Louis, UM1 (FRA)

Source : Cirad - Agritrop (https://agritrop.cirad.fr/567089/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2023-03-17 ]