Grinand Clovis, Rakotomalala Fety, Gond Valéry, Vaudry Romuald, Bernoux Martial, Vieilledent Ghislain. 2013. Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier. Remote Sensing of Environment, 139 : 68-80.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. document_570503.pdf Télécharger (5MB) |
Quartile : Q1, Sujet : REMOTE SENSING / Quartile : Q1, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q1, Sujet : ENVIRONMENTAL SCIENCES
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture
Résumé : High resolution and low uncertainty deforestation maps covering large spatial areas in tropical countries are needed to plan efficient forest conservation and management programs such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Using an open-source free software (R, GRASS and QGis) and an original statistical approach combining multi-date land cover observations based on Landsat satellite images and the random forests classifier, we obtained up-to-date deforestation maps for the periods 2000-2005 and 2005-2010 with a minimum mapping unit of 0.36 ha for 7.7 M hectares, i.e. 40.3% of the tropical humid forest and 20.6% of the tropical dry forest in Madagascar. Uncertainty in deforestation on the maps was calculated by comparing the results of the classification to more than 30,000 visual interpretation points on a regular grid. We assessed accuracy on a per-pixel basis (confusion matrix) and by measuring the relative surface difference between wall-to-wall approach and point sampling. At the pixel level, user accuracy was 84.7% for stable land cover and 60.7% for land cover change. On average for the whole study area, we obtained a relative difference of 2% for stable land cover categories and 21.1% land cover change categories respectively between the wallto- wall and the point sampling approach. Depending on the study area, our conservative assessment of annual deforestation rates ranged from 0.93 to 2.33%·yr?1 for the humid forest and from 0.46 to 1.17%·yr?1 for the dry forest. Here we describe an approach to obtain deforestation maps with reliable uncertainty estimates that can be transposed to other regions in the tropical world.
Mots-clés Agrovoc : forêt tropicale, forêt tropicale humide, déboisement, modèle de simulation, modèle mathématique, changement climatique, cartographie, évaluation de l'impact, télédétection, couverture du sol, analyse d'image, gaz à effet de serre, atténuation des effets du changement climatique, imagerie par satellite, Landsat
Mots-clés géographiques Agrovoc : Madagascar
Mots-clés complémentaires : Déforestation, Forêt tropicale sèche
Classification Agris : K01 - Foresterie - Considérations générales
P01 - Conservation de la nature et ressources foncières
P40 - Météorologie et climatologie
U10 - Informatique, mathématiques et statistiques
U30 - Méthodes de recherche
K70 - Dégâts causés aux forêts et leur protection
Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés
Auteurs et affiliations
- Grinand Clovis, GoodPlanet Foundation (FRA)
- Rakotomalala Fety, ETCTerra (MDG)
- Gond Valéry, CIRAD-ES-UPR BSef (FRA) ORCID: 0000-0002-0080-3140
- Vaudry Romuald, GoodPlanet Foundation (FRA)
- Bernoux Martial, CIRAD-PERSYST-UMR Eco&Sols (FRA)
- Vieilledent Ghislain, CIRAD-ES-UPR BSef (FRA) ORCID: 0000-0002-1685-4997
Source : Cirad - Agritrop (https://agritrop.cirad.fr/570503/)
[ Page générée et mise en cache le 2024-12-15 ]