Agritrop
Home

Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier

Grinand Clovis, Rakotomalala Fety, Gond Valéry, Vaudry Romuald, Bernoux Martial, Vieilledent Ghislain. 2013. Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier. Remote Sensing of Environment, 139 : pp. 68-80.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
document_570503.pdf

Télécharger (5MB)

Quartile : Q1, Sujet : REMOTE SENSING / Quartile : Q1, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q1, Sujet : ENVIRONMENTAL SCIENCES

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture

Abstract : High resolution and low uncertainty deforestation maps covering large spatial areas in tropical countries are needed to plan efficient forest conservation and management programs such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Using an open-source free software (R, GRASS and QGis) and an original statistical approach combining multi-date land cover observations based on Landsat satellite images and the random forests classifier, we obtained up-to-date deforestation maps for the periods 2000-2005 and 2005-2010 with a minimum mapping unit of 0.36 ha for 7.7 M hectares, i.e. 40.3% of the tropical humid forest and 20.6% of the tropical dry forest in Madagascar. Uncertainty in deforestation on the maps was calculated by comparing the results of the classification to more than 30,000 visual interpretation points on a regular grid. We assessed accuracy on a per-pixel basis (confusion matrix) and by measuring the relative surface difference between wall-to-wall approach and point sampling. At the pixel level, user accuracy was 84.7% for stable land cover and 60.7% for land cover change. On average for the whole study area, we obtained a relative difference of 2% for stable land cover categories and 21.1% land cover change categories respectively between the wallto- wall and the point sampling approach. Depending on the study area, our conservative assessment of annual deforestation rates ranged from 0.93 to 2.33%·yr?1 for the humid forest and from 0.46 to 1.17%·yr?1 for the dry forest. Here we describe an approach to obtain deforestation maps with reliable uncertainty estimates that can be transposed to other regions in the tropical world. (Résumé d'auteur)

Mots-clés Agrovoc : forêt tropicale, Forêt tropicale humide, Déboisement, Modèle de simulation, Modèle mathématique, Changement climatique, Cartographie, Évaluation de l'impact, Télédétection, couverture du sol, Analyse d'image, Gaz à effet de serre, atténuation des effets du changement climatique, Imagerie par satellite, Landsat

Mots-clés géographiques Agrovoc : Madagascar

Mots-clés complémentaires : Déforestation, Forêt tropicale sèche

Classification Agris : K01 - Forestry - General aspects
P01 - Nature conservation and land resources
P40 - Meteorology and climatology
U10 - Mathematical and statistical methods
U40 - Surveying methods
K70 - Forest injuries and protection

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Grinand Clovis, GoodPlanet Foundation (FRA)
  • Rakotomalala Fety, ETCTerra (MDG)
  • Gond Valéry, CIRAD-ES-UPR BSef (FRA) ORCID: 0000-0002-0080-3140
  • Vaudry Romuald, GoodPlanet Foundation (FRA)
  • Bernoux Martial, CIRAD-PERSYST-UMR Eco&Sols (FRA)
  • Vieilledent Ghislain, CIRAD-ES-UPR BSef (FRA) ORCID: 0000-0002-1685-4997

Source : Cirad - Agritrop (https://agritrop.cirad.fr/570503/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-29 ]