Candelier Kévin, Dibdiakova Janka, Volle Ghislaine, Rousset Patrick. 2016. Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysis. Thermochimica Acta, 644 : 33-42.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 2016_TCA_Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysis_Vf.pdf Télécharger (1MB) | Demander une copie |
Quartile : Q2, Sujet : THERMODYNAMICS / Quartile : Q2, Sujet : CHEMISTRY, ANALYTICAL / Quartile : Q3, Sujet : CHEMISTRY, PHYSICAL
Résumé : Heat treatment helps enhance some properties of raw biomass by improving its decay resistance, its dimensional stability, increasing energy density and reducing transport costs of biomass. During storage period, many industrial sites undergo fires caused by self-ignition of torrefied or carbonized biomass. The main objective of this work was to study the chemical behavior of heat treated wood under oxygen exposure. Softwood and hardwood species have been thermally treated under a nitrogen atmosphere at different treatment conditions intensities. Sample mass and heat flow have been measured during the process to observe the temperature, time and air flow influence on reaction mechanisms of heat treated wood. The oxidation process and heat flux have been evaluated in addition. Results showed that reaction heat flows used for the treatment were correlated with temperature and time of thermal degradation of both examined wood species, as well as wood mass loss, respectively. However, hardwood (beech) seems to be more sensitive to thermal degradation and oxidation than softwood (silver fir) species. In addition, differential scanning calorimetry exothermic peak and wood mass gain were observed during oxygen exposure. In fact, this phenomenon was more pronounced for degradation carried out at high temperatures and times and it tends to be correlated with the elemental composition of wood. The main evolved products of heat treated wood were identified as water (H2O), carbon monoxide (CO) and carbon dioxide (CO2).
Mots-clés Agrovoc : bois, biomasse, traitement thermique, dégradation thermique, torréfaction, carbonisation du bois, température, oxydation, propriété physicochimique, propriété mécanique, durabilité, calorimétrie, valeur énergetique, Fagus sylvatica, Abies alba
Mots-clés complémentaires : Durabilité naturelle
Mots-clés libres : Hardwoods, Heat flow, Mass loss, Oxidation, Softwoods, Thermal degradation
Classification Agris : K50 - Technologie des produits forestiers
P06 - Sources d'énergie renouvelable
Champ stratégique Cirad : Axe 2 (2014-2018) - Valorisation de la biomasse
Auteurs et affiliations
- Candelier Kévin, CIRAD-PERSYST-UPR BioWooEB (FRA) ORCID: 0000-0002-9328-8511
- Dibdiakova Janka, NIBIO (NOR)
- Volle Ghislaine, CIRAD-PERSYST-UPR BioWooEB (FRA)
- Rousset Patrick, CIRAD-PERSYST-UPR BioWooEB (THA) ORCID: 0000-0002-6956-7465
Source : Cirad-Agritrop (https://agritrop.cirad.fr/582066/)
[ Page générée et mise en cache le 2024-12-18 ]