Dezécache Camille, Salles Jean Michel, Vieilledent Ghislain, Hérault Bruno. 2017. Moving forward socio-economically focused models of deforestation. Global Change Biology, 23 (9) : 3484-3500.
Version Online first
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Dezecache2017-GCB.pdf Télécharger (1MB) | Demander une copie |
|
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Dez-cache_et_al-2017-Global_Change_Biology.pdf Télécharger (1MB) | Demander une copie |
Quartile : Outlier, Sujet : ENVIRONMENTAL SCIENCES / Quartile : Outlier, Sujet : BIODIVERSITY CONSERVATION / Quartile : Outlier, Sujet : ECOLOGY
Résumé : Whilst high-resolution spatial variables contribute to a good fit of spatially explicit deforestation models, socio-economic processes are often beyond the scope of these models. Such a low level of interest in the socio-economic dimension of deforestation limits the relevancy of these models for decision-making and may be the cause of their failure to accurately predict observed deforestation trends in the medium term. This study aims to propose a flexible methodology for taking into account multiple drivers of deforestation in tropical forested areas, where the intensity of deforestation is explicitly predicted based on socio-economic variables. By coupling a model of deforestation location based on spatial environmental variables with several sub-models of deforestation intensity based on socio-economic variables, we were able to create a map of predicted deforestation over the period 2001–2014 in French Guiana. This map was compared to a reference map for accuracy assessment, not only at the pixel scale but also over cells ranging from 1 to approximately 600 sq. km. Highly significant relationships were explicitly established between deforestation intensity and several socio-economic variables: population growth, the amount of agricultural subsidies, gold and wood production. Such a precise characterization of socio-economic processes allows to avoid overestimation biases in high deforestation areas, suggesting a better integration of socio-economic processes in the models. Whilst considering deforestation as a purely geographical process contributes to the creation of conservative models unable to effectively assess changes in the socio-economic and political contexts influencing deforestation trends, this explicit characterization of the socio-economic dimension of deforestation is critical for the creation of deforestation scenarios in REDD+ projects.
Mots-clés Agrovoc : forêt, forêt tropicale humide, déboisement, démographie, population rurale, modèle de simulation, télédétection, méthode statistique, couvert forestier, dynamique des populations, sociologie rurale, aménagement forestier
Mots-clés géographiques Agrovoc : Guyane française, France
Mots-clés libres : Demography, Guiana shield, REDD+, Scenarios, Spatially explicit modelling, Subsidies
Classification Agris : K70 - Dégâts causés aux forêts et leur protection
K01 - Foresterie - Considérations générales
E51 - Population rurale
E50 - Sociologie rurale
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires
Auteurs et affiliations
- Dezécache Camille, Université de Guyane (GUF)
- Salles Jean Michel, CNRS (FRA)
- Vieilledent Ghislain, CIRAD-ES-UPR BSef (ITA) ORCID: 0000-0002-1685-4997
- Hérault Bruno, CIRAD-ES-UMR Ecofog (GUF) ORCID: 0000-0002-6950-7286
Source : Cirad-Agritrop (https://agritrop.cirad.fr/583792/)
[ Page générée et mise en cache le 2024-12-18 ]