Agritrop
Accueil

Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice

Bhandari Aditi, Bartholome Jérôme, Cao-Hamadou Tuong-Vi, Kumari Nilima, Frouin Julien, Kumar Arvind, Ahmadi Nourollah. 2019. Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice. PloS One, 14 (5), e0208871, 21 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
2019_Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice.pdf

Télécharger (1MB) | Prévisualisation

Quartile : Q2, Sujet : MULTIDISCIPLINARY SCIENCES

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie; Staps

Résumé : Developing high yielding rice varieties that are tolerant to drought stress is crucial for the sustainable livelihood of rice farmers in rainfed rice cropping ecosystems. Genomic selection (GS) promises to be an effective breeding option for these complex traits. We evaluated the effectiveness of two rather new options in the implementation of GS: trait and environment-specific marker selection and the use of multi-environment prediction models. A reference population of 280 rainfed lowland accessions endowed with 215k SNP markers data was phenotyped under a favorable and two managed drought environments. Trait-specific SNP subsets (28k) were selected for each trait under each environment, using results of GWAS performed with the complete genotype dataset. Performances of single-environment and multi-environment genomic prediction models were compared using kernel regression based methods (GBLUP and RKHS) under two cross validation scenarios: availability (CV2) or not (CV1) of phenotypic data for the validation set, in one of the environments. Trait-specific marker selection strategy achieved predictive ability (PA) of genomic prediction up to 22% higher than markers selected on the bases of neutral linkage disequilibrium (LD). Tolerance to drought stress was up to 32% better predicted by multi-environment models (especially RKHS based models) under CV2 strategy. Under the less favorable CV1 strategy, the multi-environment models achieved similar PA than the single-environment predictions. We also showed that reasonable PA could be obtained with as few as 3,000 SNP markers, even in a population of low LD extent, provided marker selection is based on pairwise LD. The implications of these findings for breeding for drought tolerance are discussed. The most resource sparing option would be accurate phenotyping of the reference population in a favorable environment and under a managed drought, while the candidate population would be phenotyped only under one of those environments.

Mots-clés Agrovoc : riz, Oryza, sélection, marqueur génétique, génomique, résistance à la sécheresse

Mots-clés libres : Genomic selection, Drought tolerance, GxE interaction, Rice

Classification Agris : F30 - Génétique et amélioration des plantes
F60 - Physiologie et biochimie végétale

Champ stratégique Cirad : CTS 1 (2019-) - Biodiversité

Auteurs et affiliations

Source : Cirad-Agritrop (https://agritrop.cirad.fr/592800/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-07 ]