August Tom A., Pescott Oliver L., Joly Alexis, Bonnet Pierre. 2020. AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns, 1 (7):100116, 11 p.
|
Version publiée
- Anglais
Sous licence . 1-s2.0-S2666389920301574.pdf Télécharger (1MB) | Prévisualisation |
Résumé : The increasing availability of digital images, coupled with sophisticated artificial intelligence (AI) techniques for image classification, presents an exciting opportunity for biodiversity researchers to create new datasets of species observations. We investigated whether an AI plant species classifier could extract previously unexploited biodiversity data from social media photos (Flickr). We found over 60,000 geolocated images tagged with the keyword “flower” across an urban and rural location in the UK and classified these using AI, reviewing these identifications and assessing the representativeness of images. Images were predominantly biodiversity focused, showing single species. Non-native garden plants dominated, particularly in the urban setting. The AI classifier performed best when photos were focused on single native species in wild situations but also performed well at higher taxonomic levels (genus and family), even when images substantially deviated from this. We present a checklist of questions that should be considered when undertaking a similar analysis.
Mots-clés Agrovoc : biodiversité, intelligence artificielle, imagerie, réseaux sociaux, apprentissage machine, analyse de données, traitement des données, fouille de données
Mots-clés complémentaires : big data, deep learning
Mots-clés libres : Artificial intelligence, Computer vision, Deep learning, Machine learning, Social media, Biodiversity informatics, Botany, Plants, Big data
Classification Agris : F70 - Taxonomie végétale et phytogéographie
F40 - Écologie végétale
P01 - Conservation de la nature et ressources foncières
U30 - Méthodes de recherche
C30 - Documentation et information
Champ stratégique Cirad : CTS 1 (2019-) - Biodiversité
Auteurs et affiliations
- August Tom A., CEH (GBR) - auteur correspondant
- Pescott Oliver L., CEH (GBR)
- Joly Alexis, INRIA (FRA)
- Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389
Source : Cirad-Agritrop (https://agritrop.cirad.fr/597009/)
[ Page générée et mise en cache le 2024-12-18 ]