Agritrop
Accueil

AI naturalists might hold the key to unlocking biodiversity data in social media imagery

August Tom A., Pescott Oliver L., Joly Alexis, Bonnet Pierre. 2020. AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns, 1 (7):100116, 11 p.

Article de revue ; Article de recherche ; Article de revue à comité de lecture Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
1-s2.0-S2666389920301574.pdf

Télécharger (1MB) | Prévisualisation

Résumé : The increasing availability of digital images, coupled with sophisticated artificial intelligence (AI) techniques for image classification, presents an exciting opportunity for biodiversity researchers to create new datasets of species observations. We investigated whether an AI plant species classifier could extract previously unexploited biodiversity data from social media photos (Flickr). We found over 60,000 geolocated images tagged with the keyword “flower” across an urban and rural location in the UK and classified these using AI, reviewing these identifications and assessing the representativeness of images. Images were predominantly biodiversity focused, showing single species. Non-native garden plants dominated, particularly in the urban setting. The AI classifier performed best when photos were focused on single native species in wild situations but also performed well at higher taxonomic levels (genus and family), even when images substantially deviated from this. We present a checklist of questions that should be considered when undertaking a similar analysis.

Mots-clés Agrovoc : biodiversité, intelligence artificielle, imagerie, réseaux sociaux, apprentissage machine, analyse de données, traitement des données, fouille de données

Mots-clés complémentaires : big data, deep learning

Mots-clés libres : Artificial intelligence, Computer vision, Deep learning, Machine learning, Social media, Biodiversity informatics, Botany, Plants, Big data

Classification Agris : F70 - Taxonomie végétale et phytogéographie
F40 - Écologie végétale
P01 - Conservation de la nature et ressources foncières
U30 - Méthodes de recherche
C30 - Documentation et information

Champ stratégique Cirad : CTS 1 (2019-) - Biodiversité

Auteurs et affiliations

  • August Tom A., CEH (GBR) - auteur correspondant
  • Pescott Oliver L., CEH (GBR)
  • Joly Alexis, INRIA (FRA)
  • Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389

Source : Cirad-Agritrop (https://agritrop.cirad.fr/597009/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]