Agritrop
Accueil

Résultats pour : "deep learning"

Format d'export [feed] RSS 1.0 [feed] RSS 2.0
Grouper par : Année de publication | Type de document | Aucun
Aller à 2023 | 2022 | 2020 | 2019 | 2018 | 2017

Nombre de documents : 19.

2023

[img]
Prévisualisation

From prototype to inference: A pipeline to apply deep learning in sorghum panicle detection. James Chrisbin, Gu Yanyang, Potgieter Andries, David Etienne, Madec Simon, Guo Wei, Baret Frédéric, Eriksson Anders, Chapman Scott. 2023. Plant Phenomics, 5:0017, 16 p.
[img]
Prévisualisation

2022

Food security prediction from heterogeneous data combining machine and deep learning methods. Deleglise Hugo, Interdonato Roberto, Bégué Agnès, Maître d'Hôtel Elodie, Teisseire Maguelonne, Roche Mathieu. 2022. Expert Systems with Applications, 190:116189, 11 p.
[img]

2020

AI naturalists might hold the key to unlocking biodiversity data in social media imagery. August Tom A., Pescott Oliver L., Joly Alexis, Bonnet Pierre. 2020. Patterns, 1 (7):100116, 11 p.
[img]
Prévisualisation

Attention-based recurrent neural network for plant disease classification. Lee Sue Han, Goeau Hervé, Bonnet Pierre, Joly Alexis. 2020. Frontiers in Plant Science, 11:601250, 8 p.
[img]
Prévisualisation

How citizen scientists contribute to monitor protected areas thanks to automatic plant identification tools. Bonnet Pierre, Joly Alexis, Faton Jeaqn-Michel, Brown Susan, Kimiti David, Deneu Benjamin, Servajean Maximilien, Affouard Antoine, Lombardo Jean-Christophe, Mary Laura, Vignau Christel, Munoz François. 2020. Ecological Solutions and Evidence, 1 (2):e12023, 8 p.
[img]
Prévisualisation

Image-based time series representations for pixelwise eucalyptus region classification: A comparative study. Dias Danielle, Dias Ulisses, Menini Nathalia, Lamparelli Rubens Augusto Camargo, Le Maire Guerric, da S. Torres Ricardo. 2020. IEEE Geoscience and Remote Sensing Letters, 17 (8) : 1450-1454.
[img]

Machine learning using digitized herbarium specimens to advance phenological research. Pearson Katelin D., Nelson Gil, Aronson Myla F.J., Bonnet Pierre, Brenskelle Laura, Davis Charles C., Denny Ellen G., Ellwood Elizabeth R., Goeau Hervé, Heberling J. Mason, Joly Alexis, Lorieul Titouan, Mazer Susan J., Meineke Emily K., Stucky Brian J., Sweeney Patrick W., White Alexander E., Soltis Pamela S.. 2020. BioScience, 70 (7) : 610-620.
[img]
Prévisualisation

New perspectives on plant disease characterization based on deep learning. Lee Sue Han, Goeau Hervé, Bonnet Pierre, Joly Alexis. 2020. Computers and Electronics in Agriculture, 170:105220, 12 p.
[img]
Prévisualisation

Segmentación de instancias para detección automática de malezas y cultivos en campos de cultivo. Mora-Fallas Adán, Goeau Hervé, Joly Alexis, Bonnet Pierre, Mata-Montero Erick. 2020. Tecnología en Marcha, 33, n.spéc. Contribuciones a la Conferencia 6th Latin America High Performance Computing Conference (CARLA) : 13-17. Latin America High Performance Computing Conference. 6, Turrialba, Costa Rica, 25 Septembre 2019/27 Septembre 2019.
[img]
Prévisualisation

A new fine-grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction. Goeau Hervé, Mora-Fallas Adán, Champ Julien, Rossington Love Natalie L., Mazer Susan J., Mata-Montero Erick, Joly Alexis, Bonnet Pierre. 2020. Applications in Plant Sciences, 8 (6), n.spéc. Machine Learning in Plant Biology: Advances Using Herbarium Specimen Images:e11368, 11 p.
[img]
Prévisualisation

A new method for counting reproductive structures in digitized herbarium specimens using mask R-CNN. Davis Charles C., Champ Julien, Park Daniel S., Breckheimer Ian, Lyra Goia M., Xie Junxi, Joly Alexis, Tarapore Dharmesh, Ellison Aaron M., Bonnet Pierre. 2020. Frontiers in Plant Science, 11:1129, 13 p.
[img]
Prévisualisation

2019

Accelerating the automated detection, counting and measurements of reproductive organs in herbarium collections in the era of deep learning. Mora-Fallas Adán, Goeau Hervé, Mazer Susan J., Love Natalie, Mata-Montero Erick, Bonnet Pierre, Joly Alexis. 2019. Biodiversity Information Science and Standards, 3:e37341, 3 p. Biodiversity Next: Building a global infrastructure for biodiversity data, Leiden, Pays-Bas, 22 Octobre 2019/25 Octobre 2019.
[img]
Prévisualisation

Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. Ienco Dino, Interdonato Roberto, Gaetano Raffaele, Ho Tong Minh Dinh. 2019. ISPRS Journal of Photogrammetry and Remote Sensing, 158 : 11-22.
[img] [img]
Prévisualisation

Toward a large‐scale and deep phenological stage annotation of herbarium specimens: Case studies from temperate, tropical, and equatorial floras. Lorieul Titouan, Pearson Katelin D., Ellwood Elizabeth R., Goeau Hervé, Molino Jean-François, Sweeney Patrick W., Yost Jennifer M., Sachs Joel, Mata-Montero Erick, Nelson Gil, Soltis Pamela S., Bonnet Pierre, Joly Alexis. 2019. Applications in Plant Sciences, 7 (3), n.spéc. Emerging Frontiers in Phenological Research:e01233, 14 p.
[img]
Prévisualisation

2018

A CNN-based fusion method for feature extraction from sentinel data. Scarpa Giuseppe, Gargiulo Massimiliano, Mazza Antonio, Gaetano Raffaele. 2018. Remote Sensing, 10 (2):236, 20 p.
[img]
Prévisualisation

Deep recurrent neural networks for winter vegetation quality mapping via multitemporal SAR sentinel-1. Ho Tong Minh Dinh, Ienco Dino, Gaetano Raffaele, Lalande Nathalie, Ndikumana Emile, Osman Faycal, Maurel Pierre. 2018. IEEE Geoscience and Remote Sensing Letters, 15 (3) : 464-468.
[img]

A two-branch CNN architecture for land cover classification of PAN and MS imagery. Gaetano Raffaele, Ienco Dino, Osé Kenji, Cresson Rémi. 2018. Remote Sensing, 10 (11):1746, 20 p.
[img]
Prévisualisation

2017

Land cover classification via multitemporal spatial data by deep recurrent neural networks. Ienco Dino, Gaetano Raffaele, Dupaquier Claire, Maurel Pierre. 2017. IEEE Geoscience and Remote Sensing Letters, 14 (10) : 1685-1689.
[img]

Liste générée le Mon Dec 16 05:01:25 2024 CET.