Agritrop
Accueil

On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo

Rabier Charles-Elie, Berry Vinvent, Stoltz Marnus, Santos João D., Wang Wensheng, Glaszmann Jean-Christophe, Pardi Fabio, Scornavacca Céline. 2021. On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo. PLoS Computational Biology, 17 (9):e1008380, 39 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
600263.pdf

Télécharger (3MB) | Prévisualisation

Url - autres données associées : https://github.com/rabier/MySnappNet / Url - jeu de données - Entrepôt autre : https://figshare.com/articles/journal_contribution/Supplementary_material_for_the_manuscript_/16568780

Quartile : Q1, Sujet : MATHEMATICAL & COMPUTATIONAL BIOLOGY / Quartile : Q2, Sujet : BIOCHEMICAL RESEARCH METHODS

Résumé : For various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization and introgression. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software. Recently, the MCMC_BiMarkers method, implemented in PhyloNet, also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using simulations, we compare performances of SnappNet and MCMC_BiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMC_BiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMC_BiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is consistent with previous results and provides additional understanding of rice evolution.

Mots-clés Agrovoc : modèle mathématique, modèle de simulation, génomique

Mots-clés libres : Phylogenetic analysis, Network analysis, Phylogenetics, Rice, Genomics, Evolutionary genetics, Genetic networks, Algorithms

Champ stratégique Cirad : CTS 1 (2019-) - Biodiversité

Auteurs et affiliations

  • Rabier Charles-Elie, ISEM (FRA) - auteur correspondant
  • Berry Vinvent, CNRS (FRA)
  • Stoltz Marnus, ISEM (FRA)
  • Santos João D., Université de Montpellier (FRA)
  • Wang Wensheng, CAAS (CHN)
  • Glaszmann Jean-Christophe, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0001-9918-875X
  • Pardi Fabio, Université de Montpellier (FRA)
  • Scornavacca Céline, ISEM (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/600263/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-08-29 ]