Agritrop
Accueil

Averaging and stacking partial least squares regression models to predict the chemical compositions and the nutritive values of forages from spectral near infrared data

Lesnoff Matthieu, Andueza Donato, Barotin Charlène, Barré Philippe, Bonnal Laurent, Fernandez Pierna Juan Antonio, Picard Fabienne, Vermeulen Philippe, Roger Jean-Michel. 2022. Averaging and stacking partial least squares regression models to predict the chemical compositions and the nutritive values of forages from spectral near infrared data. Applied Sciences, 12 (15):7850, 15 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
lesnoff et al. appl sci 2022.pdf

Télécharger (665kB) | Prévisualisation

Résumé : Partial least square regression (PLSR) is a reference statistical model in chemometrics. In agronomy, it is used to predict components (response variables y) of chemical composition of vegetal materials from spectral near infrared (NIR) data X collected from spectrometers. PLSR reduces the dimension of the spectral data X by defining vectors that are then used as latent variables (LVs) in a multiple linear model. One difficulty is to determine the relevant dimensionality (number of LVs) for the given data. This step can be very time consuming when many datasets have to be processed and/or the datasets are frequently updated. The paper focuses on an alternative, bypassing the determination of the PLSR dimensionality and allowing for automatizing the predictions. The strategy uses ensemble learning methods, such as averaging or stacking the predictions of a set of PLSR models with different dimensionalities. The paper presents various methods of PLSR averaging and stacking and compares their performances to the usual PLSR on six real datasets on different types of forages. The main finding of the study was the overall superiority of the averaging methods compared to the usual PLSR. We therefore believe that such methods can be recommended to analyze NIR data on forages.

Mots-clés Agrovoc : composition chimique, spectroscopie infrarouge, modèle mathématique, propriété physicochimique, technique de prévision, vecteur de maladie, valeur nutritive

Mots-clés libres : PLSR, Model averaging, Stacking, NIR, Forages

Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques

Auteurs et affiliations

  • Lesnoff Matthieu, CIRAD-ES-UMR SELMET (FRA) ORCID: 0000-0002-5205-9763
  • Andueza Donato, UCA (FRA)
  • Barotin Charlène, INRAE (FRA)
  • Barré Philippe, INRAE (FRA)
  • Bonnal Laurent, CIRAD-ES-UMR SELMET (FRA) ORCID: 0000-0001-5038-7432
  • Fernandez Pierna Juan Antonio, CRA-W (BEL)
  • Picard Fabienne, UCA (FRA)
  • Vermeulen Philippe, CRA-W (BEL)
  • Roger Jean-Michel, Montpellier SupAgro (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/601676/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-07 ]