Dossa Komivi, Mmadi Marie Ali, Zhou Rong, Zhou Qi, Yang Mei, Cissé Ndiaga, Diouf Diaga, Wang Linhai, Zhang Xiurong. 2018. The contrasting response to drought and waterlogging is underpinned by divergent DNA methylation programs associated with transcript accumulation in sesame. Plant Science, 277 : 207-217.
|
Version publiée
- Anglais
Sous licence . 1-s2.0-S016894521830788X-main.pdf Télécharger (5MB) | Prévisualisation |
Quartile : Q1, Sujet : PLANT SCIENCES / Quartile : Q2, Sujet : BIOCHEMISTRY & MOLECULAR BIOLOGY
Résumé : DNA methylation is a heritable epigenetic mechanism that participates in gene regulation under abiotic stresses in plants. Sesame (Sesamum indicum) is typically considered a drought-tolerant crop but highly susceptible to waterlogging, probably because of its origin in Africa or India. Understanding DNA methylation patterns under drought and waterlogging conditions can provide insights into the regulatory mechanisms underlying sesame contrasting responses to these abiotic stresses. We combined Methylation-Sensitive Amplified Polymorphism and transcriptome analyses to profile cytosine methylation patterns, transcript accumulation, and their interplay in drought-tolerant and waterlogging-tolerant sesame genotypes. Drought stress strongly induced de novo methylation (DNM) whereas most of the loci were demethylated (DM) during the recovery phase. In contrast, waterlogging stress decreased the level of methylation but during the recovery phase, both DM and DNM were concomitantly deployed. In both stresses, the levels of the differentially accumulated transcripts (DATs) highly correlated with the methylation patterns. We observed that DM was associated with an increase of DAT levels while DNM was correlated with a decrease of DAT levels. Altogether, sesame has divergent epigenetic programs that respond to drought and waterlogging stresses and an interplay among DNA methylation and transcript accumulation may partly modulate the contrasting responses to these stresses.
Mots-clés Agrovoc : Sesamum indicum, résistance à la sécheresse, stress dû à la sécheresse, méthylation, adn, transcription d'ADN, tolérance à la sécheresse, stress abiotique, Transcription génique, résistance physiologique au stress, expression des gènes
Mots-clés géographiques Agrovoc : Chine, Inde
Auteurs et affiliations
- Dossa Komivi, CAAS (CHN) ORCID: 0000-0003-4894-6279
- Mmadi Marie Ali, CAAS (CHN)
- Zhou Rong, CAAS (CHN)
- Zhou Qi, Hubei University (CHN)
- Yang Mei, CAAS (CHN)
- Cissé Ndiaga, CERAAS (SEN)
- Diouf Diaga, UCAD (SEN)
- Wang Linhai, CAAS (CHN)
- Zhang Xiurong, CAAS (CHN)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/608270/)
[ Page générée et mise en cache le 2024-12-12 ]