Lanzi Alo Livia, Le Maire Guerric, Thiersch Cláudio Roberto, Santos Mota Thiago, Costa Pinheiro Rafael, de Souza Passos José Raimundo. 2024. Mapping stem volume in fast-growing eucalypt plantations: Integrating spectral, textural, and temporal remote sensing information with forest inventories and spatial models. Annals of Forest Science, 81:43, 16 p.
|
Version publiée
- Anglais
Sous licence . s13595-024-01255-6.pdf Télécharger (2MB) | Prévisualisation |
Résumé : Key message: Accurate volume estimation in Eucalyptus plantation stands was achieved by a linear model using SPOT and Landsat multispectral imagery, specifically texture indices and pixel-scale NDVI time integrals, which reflect the local plantation growth history. Spatial modelling techniques such as Kriging with External Drift and Generalized Additive Model slightly improved predictions by accounting for spatial correlation of volume between sample points. Context: Forest inventories are widely used to estimate stand production. To capture the inherent spatial variability within stands, spatial modelling techniques such as Kriging with External Drift (KED) and the generalized additive model (GAM) have emerged. These models incorporate information on spatial correlation and auxiliary variables that can be obtained from satellite imagery. Aims: Our study explored the use of reflectance data from SPOT and Landsat multispectral imagery. We focused on texture indices and temporal integration of vegetation indices as auxiliary variables in KED and GAM to predict stem volume of fast-growing Eucalyptus sp. plantations in Brazil. Methods: The components extracted from the high-resolution SPOT-6 image included spectral band values, band ratio metrics, key vegetation indices (NDVI, SAVI, and ARVI), texture measurements, and indices derived from texture analysis. Additionally, we included the accumulated NDVI time series acquired from Landsat 5, 7, and 8 satellites between the planting date and the forest inventory measurement date. Results: The best linear model of stem volume using remotely sensed predictors gave an R-squared value of 0.95 and a Root Mean Square Error (RMSE) of 12.44 m3/ha. The R-squared increased to 0.96 and the RMSE decreased to 10.6 m3/ha when the same predictors were included as auxiliary variables in the KED and GAM spatial models. Conclusion: The linear model using remotely sensed predictors contributed most to volume prediction, but the addition of spatial coordinates in the KED and GAM spatial models improved local volume predictions.
Mots-clés Agrovoc : télédétection, imagerie multispectrale, Eucalyptus, imagerie par satellite, Landsat, plantation forestière, inventaire forestier, modèle linéaire, imagerie, plantations, méthode statistique, forêt, cartographie, dendrométrie
Mots-clés géographiques Agrovoc : Brésil
Mots-clés libres : Geostatistics, Vegetation indices, Time series, Texture, Kriging with External Drift (KED), Generalized additive model (GAM), Fast-growing plantations
Agences de financement hors UE : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Auteurs et affiliations
- Lanzi Alo Livia, UNESP (BRA)
- Le Maire Guerric, CIRAD-PERSYST-UMR Eco&Sols (FRA) ORCID: 0000-0002-5227-958X - auteur correspondant
- Thiersch Cláudio Roberto, UFSCar (BRA)
- Santos Mota Thiago, FATEC (BRA)
- Costa Pinheiro Rafael, UNESP (BRA)
- de Souza Passos José Raimundo, UNESP (BRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/610650/)
[ Page générée et mise en cache le 2024-12-30 ]