Agritrop
Accueil

Envisaging a global infrastructure to exploit the potential of digitised collections

Groom Quentin, Dillen Mahtias, Addink Wouter, Ariño Arturo H., Bölling Christian, Bonnet Pierre, Cecchi Lorenzo, Ellwood Elizabeth R., Figueira Rui, Gagnier Pierre-Yves, Grace Olwen, Güntsch Anton, Hardy Helen, Huybrechts Pieter, Hyam Roger, Joly Alexis, Kommineni Vamsi Krishna, Larridon Isabel, Livermore Laurence, Lopes Ricardo Jorge, Meeus Sofie, Miller Jeremy, Milleville Kenzo, Panda Renato, Pignal Marc, Poelen Jorrit, Ristevski Blagoj, Robertson Tim, Rufino Ana C., Santos Joaquim, Schermer Maarten, Scott Ben, Seltmann Katja Chantre, Teixeira Heliana, Trekels Maarten, Gaikwad Jitendra. 2023. Envisaging a global infrastructure to exploit the potential of digitised collections. Biodiversity Data Journal, 11:e109439, 29 p.

Article de revue ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
611158.pdf

Télécharger (1MB) | Prévisualisation

Résumé : Tens of millions of images from biological collections have become available online over the last two decades. In parallel, there has been a dramatic increase in the capabilities of image analysis technologies, especially those involving machine learning and computer vision. While image analysis has become mainstream in consumer applications, it is still used only on an artisanal basis in the biological collections community, largely because the image corpora are dispersed. Yet, there is massive untapped potential for novel applications and research if images of collection objects could be made accessible in a single corpus. In this paper, we make the case for infrastructure that could support image analysis of collection objects. We show that such infrastructure is entirely feasible and well worth investing in.

Mots-clés Agrovoc : télédétection, apprentissage machine, analyse d'image, traitement des données, métadonnées, analyse de données, imagerie, intelligence artificielle

Mots-clés libres : Machine Learning, Functional traits, Species identification, Biodiversify, Specimens, Computer vision

Agences de financement européennes : European Commission

Agences de financement hors UE : European Cooperation in Science and Technology

Programme de financement européen : H2020

Projets sur financement : (EU) SYNTHESYS PLUS

Auteurs et affiliations

  • Groom Quentin, Botanic Garden Meise (BEL) - auteur correspondant
  • Dillen Mahtias, Botanic Garden Meise (BEL)
  • Addink Wouter, Naturalis Biodiversity Center (NLD)
  • Ariño Arturo H., Universidad de Navarra (ESP)
  • Bölling Christian, Museum Für Naturkunde Berlin (DEU)
  • Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389
  • Cecchi Lorenzo, Universita di Firenze (ITA)
  • Ellwood Elizabeth R., Natural History Museum (USA)
  • Figueira Rui, CIBIO (PRT)
  • Gagnier Pierre-Yves, MNHN (FRA)
  • Grace Olwen, Royal Botanic Garden (GBR)
  • Güntsch Anton, Freie Universitaet Berlin (DEU)
  • Hardy Helen, Natural History Museum (GBR)
  • Huybrechts Pieter, INBO (BEL)
  • Hyam Roger, Royal Botanic Gardens (GBR)
  • Joly Alexis, INRIA (FRA)
  • Kommineni Vamsi Krishna, Friedrich Schiller University Jena (DEU)
  • Larridon Isabel, Royal Botanic Garden (GBR)
  • Livermore Laurence, Natural History Museum (GBR)
  • Lopes Ricardo Jorge, CIBIO (PRT)
  • Meeus Sofie, Botanic Garden Meise (BEL)
  • Miller Jeremy, Naturalis Biodiversity Center (NLD)
  • Milleville Kenzo, Ghent University (BEL)
  • Panda Renato, University of Coimbra (PRT)
  • Pignal Marc, MNHN (FRA)
  • Poelen Jorrit, Ronin Institute (USA)
  • Ristevski Blagoj, University St. Kliment Ohridski (MKD)
  • Robertson Tim
  • Rufino Ana C., University of Coimbra (PRT)
  • Santos Joaquim, University of Coimbra (PRT)
  • Schermer Maarten, Utrecht University (NLD)
  • Scott Ben, Natural History Museum (GBR)
  • Seltmann Katja Chantre, UC (USA)
  • Teixeira Heliana, University of Aveiro (PRT)
  • Trekels Maarten, Botanic Garden Meise (BEL)
  • Gaikwad Jitendra, Friedrich Schiller University Jena (DEU)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/611158/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-08 ]