Bartholome Jérôme, Ospina José Omar, Sandoval Mario, Espinosa Natalia, Arcos Jairo, Ospina Yolima, Frouin Julien, Beartschi Cédric, Ghneim Thaura, Grenier Cécile. 2024. Genomic selection for tolerance to aluminum toxicity in a synthetic population of upland rice. PloS One, 19 (8):e0307009, 21 p.
![]()
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. 612335.pdf Télécharger (1MB) | Prévisualisation |
Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/HSIM8E / Url - jeu de données - Entrepôt autre : https://figshare.com/articles/journal_contribution/Distribution_of_the_molecular_markers_used_in_this_study_across_the_rice_genome_/26813247?file=48735450
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie; Staps
Résumé : Over half of the world's arable land is acidic, which constrains cereal production. In South America, different rice-growing regions (Cerrado in Brazil and Llanos in Colombia and Venezuela) are particularly affected due to high aluminum toxicity levels. For this reason, efforts have been made to breed for tolerance to aluminum toxicity using synthetic populations. The breeding program of CIAT-CIRAD is a good example of the use of recurrent selection to increase productivity for the Llanos in Colombia. In this study, we evaluated the performance of genomic prediction models to optimize the breeding scheme by hastening the development of an improved synthetic population and elite lines. We characterized 334 families at the S0:4 generation in two conditions. One condition was the control, managed with liming, while the other had high aluminum toxicity. Four traits were considered: days to flowering (FL), plant height (PH), grain yield (YLD), and zinc concentration in the polished grain (ZN). The population presented a high tolerance to aluminum toxicity, with more than 72% of the families showing a higher yield under aluminum conditions. The performance of the families under the aluminum toxicity condition was predicted using four different models: a single-environment model and three multi-environment models. The multi-environment models differed in the way they integrated genotype-by-environment interactions. The best predictive abilities were achieved using multi-environment models: 0.67 for FL, 0.60 for PH, 0.53 for YLD, and 0.65 for ZN. The gain of multi-environment over single-environment models ranged from 71% for YLD to 430% for FL. The selection of the best-performing families based on multi-trait indices, including the four traits mentioned above, facilitated the identification of suitable families for recombination. This information will be used to develop a new cycle of recurrent selection through genomic selection.
Mots-clés Agrovoc : Oryza sativa, riz pluvial, sélection récurrente, toxicité, amélioration des plantes, sélection, génome, génomique, Magnaporthe grisea, aluminium, phénotype
Mots-clés géographiques Agrovoc : Colombie, Brésil, Venezuela (République bolivarienne du)
Classification Agris : F30 - Génétique et amélioration des plantes
H50 - Troubles divers des plantes
Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes
Agences de financement hors UE : World Bank Group, Colombian Ministry of Science, Technology, and Innovation, Instituto Colombiano de Crédito Educativo y Estudios Técnicos en el Exterior, Colombian Ministry of Education, Colombian Ministry of Industry and Tourism, Consortium of International Agricultural Research Centers
Auteurs et affiliations
-
Bartholome Jérôme, CIRAD-BIOS-UMR AGAP (COL)
ORCID: 0000-0002-0855-3828 - auteur correspondant
- Ospina José Omar, Fedearroz–F.N.A. (COL)
- Sandoval Mario, Fedearroz–F.N.A. (COL)
- Espinosa Natalia, Fedearroz–F.N.A. (COL)
- Arcos Jairo, CIAT (COL)
- Ospina Yolima, CIAT (COL)
-
Frouin Julien, CIRAD-BIOS-UMR AGAP (FRA)
ORCID: 0000-0003-1591-0755
- Beartschi Cédric, Université de Montpellier (FRA)
-
Ghneim Thaura, Universidad Icesi (COL)
ORCID: 0000-0001-5716-0900
-
Grenier Cécile, CIRAD-BIOS-UMR AGAP (FRA)
ORCID: 0000-0001-5390-8344 - auteur correspondant
Source : Cirad-Agritrop (https://agritrop.cirad.fr/612335/)
[ Page générée et mise en cache le 2025-03-06 ]