Agritrop
Accueil

Monitoring the early growth of forest plantations with Sentinel-2 satellite time-series

Goral Mathieu, Le Maire Guerric, Ferraço Scolforo Henrique, Stape Jose Luiz, Miranda Evandro Nunes, Silva Ferreira Thais Cristina, Barbosa Ferreira Vitoria, Feret Jean Baptiste, De Boissieu Florian. 2025. Monitoring the early growth of forest plantations with Sentinel-2 satellite time-series. International Journal of Remote Sensing, 28 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
2025Goral_IJRS_Monitoring the early growth of forest plantations with Sentinel-2 satellite time-series.pdf

Télécharger (7MB) | Demander une copie

Url - jeu de données - Entrepôt autre : https://figshare.com/articles/journal_contribution/Monitoring_the_early_growth_of_forest_plantations_with_Sentinel-2_satellite_time-series/28462254

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture

Résumé : Monitoring initial growth phases is essential for the success of forest plantations. This study introduces a methodology aimed at characterizing the growth of Eucalyptus short rotation plantations in Brazil during their first 2 years, based on Sentinel-2 satellite imagery. The primary goal is to detect potential anomalies at the pixel level, covering an area of 400 m2, and to feed operational decision-making strategies aiming at characterizing, correcting or mitigating the problem. The approach relies on predictive machine learning models that estimate an integrated growth index, the volume that the trees will reach at 2 years of age (V2Y). The model uses various plantation characteristics such as planting density, genotypic characteristics and environmental factors and incorporates vegetation indices derived from Sentinel-2 data acquired during the first 2 years of the plantation. These anticipation models were calibrated on an extensive dataset comprising more than 9000 inventory plots spread over more than ninety thousand hectares. The Green Normalized Difference Vegetation index (GNDVI) was shown to give the best results among several vegetation indices tested. The accuracy of V2Y prediction improved significantly when longer periods of vegetation indices were included. Our results demonstrate that using the GNDVI data from the first year or from the initial 18 months of plantation growth yields accurate predictions of V2Y, with R2 values of 0.71 and 0.74 and RMSE values of 7.86 and 7.46 m3 ha−1, respectively. The anticipation model with GNDVI outperformed simpler models that solely rely on stand characteristics. The novel approach developed in this study offers an operational means to reliably estimate an early-stage growth indicator for Eucalyptus plantations in Brazil.

Mots-clés Agrovoc : plantation forestière, Eucalyptus, imagerie par satellite, Eucalyptus grandis, télédétection, anatomie végétale, modélisation environnementale, caractéristique du peuplement, gestion de la santé des forêts, imagerie multispectrale, Eucalyptus urophylla, accroissement forestier, apprentissage machine

Mots-clés géographiques Agrovoc : Brésil

Mots-clés libres : Sentinel-2, Time-series, Fast growing plantations, Growth index, Establishment phase, Planting quality, Eucalypt

Auteurs et affiliations

  • Goral Mathieu, CIRAD-PERSYST-UMR Eco&Sols (FRA)
  • Le Maire Guerric, CIRAD-PERSYST-UMR Eco&Sols (FRA) ORCID: 0000-0002-5227-958X - auteur correspondant
  • Ferraço Scolforo Henrique, Suzano SA (BRA)
  • Stape Jose Luiz, UNESP (BRA)
  • Miranda Evandro Nunes, Suzano SA (BRA)
  • Silva Ferreira Thais Cristina, Suzano SA (BRA)
  • Barbosa Ferreira Vitoria, CIRAD-PERSYST-UMR Eco&Sols (FRA) ORCID: 0009-0006-9621-8451
  • Feret Jean Baptiste, CNRS (FRA)
  • De Boissieu Florian, INRAE (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/612408/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-03-05 ]