Agritrop
Accueil

Using a low-cost drone to assess herbaceous biomass and quality in the Sahelian Rangeland ecosystems

Gebremedhin Haftay Hailu, Salgado Paulo, Fassinou Cofélas, Taugourdeau Simon. 2025. Using a low-cost drone to assess herbaceous biomass and quality in the Sahelian Rangeland ecosystems. African Journal of Range and Forage Science, 42 (3) : 1-11.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
Using a low-cost drone to assess herbaceous biomass and quality in the Sahelian Rangeland ecosystems.pdf

Télécharger (3MB) | Prévisualisation

Résumé : Existing ways of assessing rangeland plant biomass and nutritional quality mostly rely on field surveys, which are difficult to generalise across plots, along with laboratory-based techniques that entail lengthy pre-processing procedures. As a solution, drones have emerged as a promising tool capable of collecting low-altitude images over expansive areas with minimal effort and cost. Here, we explore the potential of low-cost drone images to estimate the rangeland biomass, and quality of the Sahelian rangeland ecosystem. Model calibration and validation were conducted using a random forest machine learning algorithm, where the response variables were field vegetation samples, and the explanatory variables were derived from drone image outputs. A principal component analysis (PCA) was conducted to explore the multivariate relationships between drone-derived vegetation indices and field-measured biomass and quality attributes. In the validation datasets, the random forest model exhibited relative root mean squared errors (RRMSE) of 31% for fresh mass and 37% for dry mass. The random forest model demonstrated a relatively high prediction accuracy, yielding RRMSE values of 32% for crude protein, 9% for neutral detergent fibre, 8% for acid detergent fibre, and 17% for organic matter digestibility contents. The PCA revealed that the first two components explained 53.3% of the total variance. Overall, these results showed that red, green and blue (RGB) images acquired from low-cost drones can be used to estimate rangeland biomass and quality.

Mots-clés Agrovoc : biomasse, plante herbacée, parcours, fibres insolubles dans les détergents acides, fibre détergente neutre, écosystème, télédétection

Mots-clés géographiques Agrovoc : Sénégal, Sahel, France

Mots-clés libres : UAV, Forage quality, Pastoral ecosystems, Vegetation quality, Rangeland monitoring, Photogrammetry, Unmanned aerial vehicles

Agences de financement européennes : European Commission

Agences de financement hors UE : New Zealand Government, Global Research Alliance on Agricultural Greenhouse Gases

Projets sur financement : (EU) Carbon Sequestration and Greenhouse Gas Emissions in (Agro) Sylvopastoral Ecosystems in the Sahelian CILSS States, (EU) Development Smart Innovation through Research in Agriculture

Auteurs et affiliations

  • Gebremedhin Haftay Hailu, Haramaya University (ETH) - auteur correspondant
  • Salgado Paulo, CIRAD-ES-UMR SELMET (SEN)
  • Fassinou Cofélas, ISRA (SEN)
  • Taugourdeau Simon, CIRAD-ES-UMR SELMET (MAR) ORCID: 0000-0001-6561-3228

Source : Cirad-Agritrop (https://agritrop.cirad.fr/614765/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-09-25 ]