Denis Marie, Tadesse Mahlet. 2016. Evaluation of hierarchical models for integrative genomic analyses. Bioinformatics, 32 (5) : 738-746.
Version Online first
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 2015_Bioinformatics_Denis_Tadesse.pdf Télécharger (276kB) | Demander une copie |
Url - autres données associées : https://github.com/mgt000/IntegrativeAnalysis / Url - jeu de données - Entrepôt autre : https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
Quartile : Outlier, Sujet : MATHEMATICAL & COMPUTATIONAL BIOLOGY / Quartile : Outlier, Sujet : BIOCHEMICAL RESEARCH METHODS / Quartile : Outlier, Sujet : BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Résumé : Motivation: Advances in high-throughput technologies have led to the acquisition of various types of -omic data on the same biological samples. Each data type gives independent and complementary information that can explain the biological mechanisms of interest. While several studies performing independent analyses of each dataset have led to significant results, a better understanding of complex biological mechanisms requires an integrative analysis of different sources of data. Results: Flexible modeling approaches, based on penalized likelihood methods and expectation-maximization (EM) algorithms, are studied and tested under various biological relationship scenarios between the different molecular features and their effects on a clinical outcome. The models are applied to genomic datasets from two cancer types in the Cancer Genome Atlas project: glioblastoma multiforme and ovarian serous cystadenocarcinoma. The integrative models lead to improved model fit and predictive performance. They also provide a better understanding of the biological mechanisms underlying patients' survival.
Mots-clés Agrovoc : modèle de simulation, modèle mathématique, bioinformatique, génie génétique, méthode statistique, maladie de l'homme, cerveau, maladie de l'appareil génital fém, néoplasme, adénome, génomique, étude de cas, marqueur génétique, phénotype, biologie moléculaire, analyse de données, méthodologie, contrôle continu
Mots-clés complémentaires : Algorithme
Mots-clés libres : Penalized likelihood methods, Expectation-maximization (EM) algorithms, -omic data
Classification Agris : U10 - Informatique, mathématiques et statistiques
S50 - Santé humaine
Champ stratégique Cirad : Hors axes (2014-2018)
Auteurs et affiliations
- Denis Marie, CIRAD-BIOS-UMR AGAP (FRA)
- Tadesse Mahlet, CIRAD-ES-UPR BSef (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/580168/)
[ Page générée et mise en cache le 2024-12-18 ]