Dias Danielle, Dias Ulisses, Menini Nathalia, Lamparelli Rubens Augusto Camargo, Le Maire Guerric, da S. Torres Ricardo. 2020. Image-based time series representations for pixelwise eucalyptus region classification: A comparative study. IEEE Geoscience and Remote Sensing Letters, 17 (8) : 1450-1454.
![]() |
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 594540.pdf Télécharger (1MB) | Demander une copie |
Quartile : Q1, Sujet : ENGINEERING, ELECTRICAL & ELECTRONIC / Quartile : Q1, Sujet : GEOCHEMISTRY & GEOPHYSICS / Quartile : Q2, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q2, Sujet : REMOTE SENSING
Résumé : Pixelwise image classification based on time series profiles has been very effective in several applications. In this letter, we investigate recently proposed image-based time series encoding approaches [e.g., Gramian angular summation field/Gramian angular difference field (GASF/GADF) and Markov transition field (MTF)] to support the identification of eucalyptus regions in remote sensing images. We perform a comparative study concerning the combination of image-based representations suitable for encoding the most important time series patterns with the ability of state-of-the-art deep-learning-based approaches for characterizing image visual properties. The comparative study demonstrates that the evaluated image representations, combined with different deep learning feature extractors lead to highly effective classification results, which are superior to those of recently proposed methods for time-series-based eucalyptus plantation detection.
Mots-clés Agrovoc : télédétection, analyse de séries chronologiques, analyse d'image, classification, imagerie par satellite, Eucalyptus, plantations
Mots-clés complémentaires : deep learning
Mots-clés libres : Deep Learning, Eucalyptus, Image representation, Pixelwise image classification, Time series
Classification Agris : U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
K01 - Foresterie - Considérations générales
Champ stratégique Cirad : CTS 5 (2019-) - Territoires
Auteurs et affiliations
- Dias Danielle, UNICAMP (BRA)
- Dias Ulisses, UNICAMP (BRA)
- Menini Nathalia, UNICAMP (BRA)
- Lamparelli Rubens Augusto Camargo, UNICAMP (BRA)
-
Le Maire Guerric, CIRAD-PERSYST-UMR Eco&Sols (FRA)
ORCID: 0000-0002-5227-958X
- da S. Torres Ricardo, Norwegian University of Science and Technology (NOR)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/594540/)
[ Page générée et mise en cache le 2025-03-01 ]