Fayad Ibrahim, Baghdadi Nicolas, Alcarde Alvares Clayton, Stape Jose Luiz, Bailly Jean Stéphane, Ferraço Scolforo Henrique, Zribi Mehrez, Le Maire Guerric. 2021. Assessment of GEDI's LiDAR data for the estimation of canopy heights and wood volume of eucalyptus plantations in Brazil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14 : 7095-7110.
|
Version publiée
- Anglais
Sous licence . 2021Fayad_IEEE_GEDI canopy height wood volume Eucalyptus.pdf Télécharger (5MB) | Prévisualisation |
Quartile : Q1, Sujet : GEOGRAPHY, PHYSICAL / Quartile : Q2, Sujet : ENGINEERING, ELECTRICAL & ELECTRONIC / Quartile : Q2, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q2, Sujet : REMOTE SENSING
Résumé : Over the past two decades spaceborne LiDAR systems have gained momentum in the remote sensing community with their ability to accurately estimate canopy heights and aboveground biomass. This article aims at using the most recent global ecosystem dynamics investigation (GEDI) LiDAR system data to estimate the stand-scale dominant heights ( Hdom ), and stand volume ( V ) of Eucalyptus plantations in Brazil. These plantations provide a valuable case study due to the homogenous canopy cover and the availability of precise field measurements. Several linear and nonlinear regression models were used for the estimation of Hdom and V based on several GEDI metrics. Hdom and V estimation results showed that over low-slopped terrain the most accurate estimates of Hdom and V were obtained using the stepwise regression, with an root-mean-square error (RMSE) of 1.33 m ( R 2 of 0.93) and 24.39 m 3 .ha −1 ( R 2 of 0.90) respectively. The principal metric explaining more than 87% and 84% of the variability ( R 2 ) of Hdom and V was the metric representing the height above the ground at which 90% of the waveform energy occurs. Testing the postprocessed GEDI metric values issued from six available different processing algorithms showed that the accuracy on Hdom and V estimates is algorithm dependent, with a 16% observed increase in RMSE on both variables using algorithm a5 vs. a1. Finally, the choice to select the ground return from the last detected mode or the stronger of the last two modes could also affect the Hdom estimation accuracy with 12 cm RMSE decrease using the latter.
Mots-clés Agrovoc : dendrométrie, couvert forestier, plantations, télédétection, Eucalyptus, cubage d'arbre, biomasse aérienne des arbres, peuplement forestier
Mots-clés géographiques Agrovoc : Brésil
Mots-clés complémentaires : Canopée
Mots-clés libres : Forestry, Measurement, Laser radar, Estimation, Biomass, Végétation, Extraterrestrial measurements, Brazil, Dominant heights, Eucalyptus, Global ecosystem dynamics investigation (GEDI), LiDAR, Wood volume
Classification Agris : K10 - Production forestière
U30 - Méthodes de recherche
Champ stratégique Cirad : CTS 5 (2019-) - Territoires
Auteurs et affiliations
- Fayad Ibrahim, INRAE (FRA) - auteur correspondant
- Baghdadi Nicolas, INRAE (FRA)
- Alcarde Alvares Clayton, UNESP (BRA)
- Stape Jose Luiz, UNESP (BRA)
- Bailly Jean Stéphane, INRAE (FRA)
- Ferraço Scolforo Henrique, Suzano SA (BRA)
- Zribi Mehrez, CESBIO (FRA)
- Le Maire Guerric, CIRAD-PERSYST-UMR Eco&Sols (FRA) ORCID: 0000-0002-5227-958X
Source : Cirad-Agritrop (https://agritrop.cirad.fr/599041/)
[ Page générée et mise en cache le 2024-12-07 ]