Agritrop
Accueil

Food security prediction from heterogeneous data combining machine and deep learning methods

Deleglise Hugo, Interdonato Roberto, Bégué Agnès, Maître d'Hôtel Elodie, Teisseire Maguelonne, Roche Mathieu. 2022. Food security prediction from heterogeneous data combining machine and deep learning methods. Expert Systems with Applications, 190:116189, 11 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Deleglise_ESWA_2022.pdf

Télécharger (1MB) | Demander une copie

Url - autres données associées : https://github.com/pipapou/FSPHD_Code / Url - autres données associées : https://github.com/pipapou/Permutation-importance-for-FCS-and-HDDS

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Economie-gestion

Résumé : After many years of decline, hunger in Africa is growing again. This represents a global societal issue that all disciplines concerned with data analysis are facing. The rapid and accurate identification of food insecurity situations is a complex challenge. Although a number of food security alert and monitoring systems exist in food insecure countries, the data and methodologies they are based on do not allow for comprehending food security in all its complexity. In this study, we focus on two key food security indicators: the food consumption score (FCS) and the household dietary diversity score ((HDDS). Based on the observation that producing such indicators is expensive in terms of time and resources, we propose the FSPDH (Food Security Prediction based on Heterogeneous Data) framework, based on state-of-the-art machine and deep learning models, to enable the estimation of FCS and HDDS starting from publicly available heterogeneous data. We take into account the indicators estimated using data from the Permanent Agricultural Survey conducted by the Burkina Faso government from 2009 to 2018 as reference data. We produce our estimations starting from heterogeneous data that include rasters (e.g., population density, land use, soil quality), GPS points (hospitals, schools, violent events), line vectors (waterways), quantitative variables (maize prices, World Bank variables, meteorological data) and time series (Smoothed Brightness Temperature — SMT, rainfall estimates, maize prices). The experimental results show a promising performance of our framework, which outperforms competing methods, thus paving the way for the development of advanced food security prediction systems based on state-of-the-art data science technologies.

Mots-clés Agrovoc : sécurité alimentaire, analyse de données, consommation alimentaire, sécurité alimentaire des ménages, modèle de simulation, apprentissage machine

Mots-clés géographiques Agrovoc : Burkina Faso

Mots-clés complémentaires : deep learning

Mots-clés libres : Food Security, Machine learning, Deep learning, Heterogeneous data

Classification Agris : E10 - Économie et politique agricoles
S01 - Nutrition humaine - Considérations générales
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : CTS 3 (2019-) - Systèmes alimentaires

Auteurs et affiliations

  • Deleglise Hugo, CIRAD-ES-UMR TETIS (FRA) - auteur correspondant
  • Interdonato Roberto, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0002-0536-6277
  • Bégué Agnès, CIRAD-ES-UMR TETIS (FRA)
  • Maître d'Hôtel Elodie, CIRAD-ES-UMR MOISA (FRA)
  • Teisseire Maguelonne, INRAE (FRA)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568

Source : Cirad-Agritrop (https://agritrop.cirad.fr/599809/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-01-06 ]