Gbodjo Jean Eudes, Ienco Dino, Leroux Louise. 2020. Toward spatio-spectral analysis of sentinel-2 time series data for land cover mapping. IEEE Geoscience and Remote Sensing Letters, 17 (2) : 307-311.
|
Version post-print
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. 605365.pdf Télécharger (7MB) | Prévisualisation |
Quartile : Q1, Sujet : ENGINEERING, ELECTRICAL & ELECTRONIC / Quartile : Q1, Sujet : GEOCHEMISTRY & GEOPHYSICS / Quartile : Q2, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q2, Sujet : REMOTE SENSING
Résumé : Modern earth observation (EO) systems produce huge volumes of images with the objective to monitor the earth surface. Due to the high revisit time of EO systems, such as Sentinel-2 constellation, satellite image time series (SITS) is continuously produced allowing to improve the monitoring of spatiotemporal phenomena. How to efficiently analyze SITS considering both spectral and spatial information is still an open question in the remote sensing field. To deal with SITS classification, in this letter, we propose a spatio-spectral classification framework that leverages the mathematical morphology to extract spatial characteristics from SITS data and combines them with the already available spectral and temporal information. Experiments carried out on two study sites characterized by different heterogeneous land covers have demonstrated the significance of our proposal and the value to combine spatial as well as spectral information in the context of SITS land cover classification.
Mots-clés Agrovoc : télédétection, cartographie de l'occupation du sol, analyse de séries chronologiques, analyse d'image, classification des terres, analyse de données, imagerie par satellite, données spatiales, satellite d'observation de la Terre, utilisation des terres, couverture du sol
Mots-clés géographiques Agrovoc : France, La Réunion
Mots-clés libres : Land cover classification, Mathematical morphology (MM), Satellite image time series (SITS), Sentinel-2 (S2)
Agences de financement hors UE : Agence Nationale de la Recherche, Ministère de l'agriculture et du développement rural
Projets sur financement : (FRA) Institut Convergences en Agriculture Numérique
Auteurs et affiliations
- Gbodjo Jean Eudes, IRSTEA (FRA)
- Ienco Dino, IRSTEA (FRA)
- Leroux Louise, CIRAD-PERSYST-UPR AIDA (SEN) ORCID: 0000-0002-7631-2399
Source : Cirad-Agritrop (https://agritrop.cirad.fr/605365/)
[ Page générée et mise en cache le 2024-12-22 ]