Campbell Lahcen I., Nwezeobi Joachim, van Brunschot Sharon, Kaweesi Tadeo, Seal Susan, Swamy Rekha A. R., Namuddu Annet, Maslen Gareth L., Mugerwa Habibu, Armean Irina M., Haggerty Leanne, Martin Fergal J., Malka Osnat, Santos Garcia Diego, Juravel Ksenia, Morin Shai, Stephens Michael E., Muhindira Paul Visendi, Kersey Paul J., Maruthi M.N., Omongo Christopher A., Navas-Castillo Jesús, Fiallo-Olivé Elvira, Mohammed Ibrahim Umar, Wang Hua-Ling, Onyeka Joseph, Alicai Titus, Colvin John. 2023. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: Cryptic species, agricultural pests and plant-virus vectors. BMC Genomics, 24:408, 36 p.
![]()
|
Version publiée
- Anglais
Sous licence ![]() 614168.pdf Télécharger (7MB) | Prévisualisation |
Url - jeu de données - Entrepôt autre : https://figshare.com/articles/dataset/Additional_file_1_of_Comparative_evolutionary_analyses_of_eight_whitefly_Bemisia_tabaci_sensu_lato_genomes_cryptic_species_agricultural_pests_and_plant-virus_vectors/26988787
Résumé : Background: The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. Results: We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616—658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8—13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. Conclusions: These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Mots-clés Agrovoc : Bemisia tabaci, génome, phylogénie, vecteur de maladie, génomique, virus des végétaux, transfert de gène
Mots-clés géographiques Agrovoc : Ouganda, Afrique
Mots-clés libres : Biological species, Genome assembly, Comparative genomics, Phylogenomics, Cladogenesis, Transposons, Endosymbiont, Horizontal genes
Agences de financement hors UE : Bill and Melinda Gates Foundation
Auteurs et affiliations
- Campbell Lahcen I., EMBL (GBR) - auteur correspondant
- Nwezeobi Joachim, University of Greenwich (GBR) - auteur correspondant
- van Brunschot Sharon, University of Queensland (AUS)
- Kaweesi Tadeo, University of Greenwich (GBR)
- Seal Susan, University of Greenwich (GBR)
- Swamy Rekha A. R., University of Greenwich (GBR)
- Namuddu Annet, University of Greenwich (GBR)
- Maslen Gareth L., EMBL (GBR)
- Mugerwa Habibu, University of Georgia (USA)
- Armean Irina M., EMBL (GBR)
- Haggerty Leanne, EMBL (GBR)
- Martin Fergal J., EMBL (GBR)
- Malka Osnat, Hebrew University of Jerusalem (ISR)
- Santos Garcia Diego, CIRAD-BIOS-UMR PHIM (FRA)
- Juravel Ksenia, Hebrew University of Jerusalem (ISR)
- Morin Shai, Hebrew University of Jerusalem (ISR)
- Stephens Michael E., Cornell University (USA)
- Muhindira Paul Visendi, University of Greenwich (GBR)
- Kersey Paul J., EMBL (DEU)
- Maruthi M.N., University of Greenwich (GBR)
- Omongo Christopher A., NaCRRI (UGA)
- Navas-Castillo Jesús, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (ESP)
- Fiallo-Olivé Elvira, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (ESP)
- Mohammed Ibrahim Umar, Kebbi State University of Science and Technology (NGA)
- Wang Hua-Ling, Agricultural University of Hebei (CHN)
- Onyeka Joseph, NRCRI (NGA)
- Alicai Titus, NaCRRI (UGA)
- Colvin John, University of Greenwich (GBR)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/614168/)
[ Page générée et mise en cache le 2025-09-09 ]