Agritrop
Accueil

Across-population genomic prediction in grapevine opens up promising prospects for breeding

Brault Charlotte, Segura Vincent, This Patrice, Le Cunff Loïc, Flutre Timothée, François Pierre, Pons Thierry, Péros Jean-Pierre, Doligez Agnès. 2022. Across-population genomic prediction in grapevine opens up promising prospects for breeding. Horticulture Research, 9:uhac041, 13 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
611019.pdf

Télécharger (1MB) | Prévisualisation

Url - jeu de données - Entrepôt autre : https://doi.org/10.15454/PNQQUQ

Résumé : Crop breeding involves two selection steps: choosing progenitors and selecting individuals within progenies. Genomic prediction, based on genome-wide marker estimation of genetic values, could facilitate these steps. However, its potential usefulness in grapevine (Vitis vinifera L.) has only been evaluated in non-breeding contexts mainly through cross-validation within a single population. We tested across-population genomic prediction in a more realistic breeding configuration, from a diversity panel to ten bi-parental crosses connected within a half-diallel mating design. Prediction quality was evaluated over 15 traits of interest (related to yield, berry composition, phenology and vigour), for both the average genetic value of each cross (cross mean) and the genetic values of individuals within each cross (individual values). Genomic prediction in these conditions was found useful: for cross mean, average per-trait predictive ability was 0.6, while per-cross predictive ability was halved on average, but reached a maximum of 0.7. Mean predictive ability for individual values within crosses was 0.26, about half the within-half-diallel value taken as a reference. For some traits and/or crosses, these across-population predictive ability values are promising for implementing genomic selection in grapevine breeding. This study also provided key insights on variables affecting predictive ability. Per-cross predictive ability was well predicted by genetic distance between parents and when this predictive ability was below 0.6, it was improved by training set optimization. For individual values, predictive ability mostly depended on trait-related variables (magnitude of the cross effect and heritability). These results will greatly help designing grapevine breeding programs assisted by genomic prediction.

Mots-clés Agrovoc : amélioration des plantes, génotype, Vitis vinifera, héritabilité, marqueur génétique, vigne, sélection, modèle mathématique, amélioration génétique, technique de prévision, génomique, méthode statistique, croisement, génome, héritabilité génotypique

Auteurs et affiliations

  • Brault Charlotte, CIRAD-BIOS-UMR AGAP (FRA)
  • Segura Vincent, INRAE (FRA)
  • This Patrice, INRAE (FRA)
  • Le Cunff Loïc, INRAE (FRA)
  • Flutre Timothée, INRAE (FRA)
  • François Pierre, INRAE (FRA)
  • Pons Thierry, INRAE (FRA)
  • Péros Jean-Pierre, INRAE (FRA)
  • Doligez Agnès, INRAE (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/611019/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-11-20 ]