Agritrop
Accueil

Robust NIRS models for non-destructive prediction of mango internal quality

Nordey Thibault, Joas Jacques, Davrieux Fabrice, Chillet Marc, Lechaudel Mathieu. 2017. Robust NIRS models for non-destructive prediction of mango internal quality. Scientia Horticulturae, 216 : 51-57.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Robust NIRS models for non-destructive prediction of mango internal quality.pdf

Télécharger (1MB) | Demander une copie

Quartile : Q1, Sujet : HORTICULTURE

Résumé : Near infrared spectroscopy (NIRS) is increasingly being used with success in fruit supply chains for the non-destructive assessment of internal fruit quality. However, the prediction performance of NIRS was reported to be sensitive to changes in the pre- and post-harvest factors involved in fruit quality variations. This study attempted to establish robust NIRS models to predict mango internal quality, regardless of the conditions encountered by fruits on the tree and after harvest. A database involving mangoes (n = 250) from different production years and orchards and which were harvested at different maturity stages and stored at different temperatures for various periods was used to characterize mango quality using NIRS. The large variations measured in mango total soluble solid (TSS) content, dry matter, flesh color and acidity ensured that the dataset considered in this study covered differences in quality levels that can be encountered for the mango cultivar studied. Variable selection procedures and pre-processing techniques were used to improve the performance of the Partial Least Squares Regression (PLSR) models that accurately predicted the mango quality traits studied, regardless of the origins and storage conditions. The root mean square errors in prediction (RMSEP) were 0.6°Brix, 1.4%, 5.9 meq 100 g FM−1 and 3.16°Brix for the TSS content, dry matter content, titratable acidity and the hue angle of flesh color, respectively. The results presented in this study confirmed that robust NIRS models can be developed to predict mango quality by considering the pre- and post-harvest factors involved in fruit quality. Further studies should assess the use of NIR spectra on fruits to address internal quality variation issues, as well as the ability of NIRS to predict fruit shelf life and eating quality at harvest.

Mots-clés Agrovoc : spectroscopie infrarouge, Mangifera indica, qualité, technique de prévision, mangue, variété, propriété physicochimique, fruits, teneur en matière sèche, qualité des aliments

Mots-clés géographiques Agrovoc : France

Mots-clés libres : Mangifera indica, Near infrared spectroscopy, Fruit quality, Pre- and post-harvest factors

Classification Agris : U30 - Méthodes de recherche
Q04 - Composition des produits alimentaires
F60 - Physiologie et biochimie végétale

Champ stratégique Cirad : Axe 3 (2014-2018) - Alimentation durable

Agences de financement européennes : European Commission

Auteurs et affiliations

  • Nordey Thibault, CIRAD-PERSYST-UPR HortSys (FRA)
  • Joas Jacques, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Davrieux Fabrice, CIRAD-PERSYST-UMR Qualisud (REU)
  • Chillet Marc, CIRAD-PERSYST-UMR Qualisud (REU)
  • Lechaudel Mathieu, CIRAD-PERSYST-UMR Qualisud (GLP) ORCID: 0000-0002-1108-8357

Source : Cirad-Agritrop (https://agritrop.cirad.fr/582889/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-09 ]