De Verdal Hugues, Baertschi Cédric, Frouin Julien, Quintero Constanza, Ospina Yolima, Alvarez María Fernanda, Cao Tuong-Vi, Bartholome Jérôme, Grenier Cécile. 2023. Optimization of multi-generation multi-location genomic prediction models for recurrent genomic selection in an upland rice population. Rice, 16:43, 18 p.
|
Version publiée
- Anglais
Sous licence . [28] deVerdal_2023_Rice.pdf Télécharger (2MB) | Prévisualisation |
Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/A7DEHI
Résumé : Genomic selection is a worthy breeding method to improve genetic gain in recurrent selection breeding schemes. The integration of multi-generation and multi-location information could significantly improve genomic prediction models in the context of shuttle breeding. The Cirad-CIAT upland rice breeding program applies recurrent genomic selection and seeks to optimize the scheme to increase genetic gain while reducing phenotyping efforts. We used a synthetic population (PCT27) of which S0 plants were all genotyped and advanced by selfing and bulk seed harvest to the S0:2, S0:3, and S0:4 generations. The PCT27 was then divided into two sets. The S0:2 and S0:3 progenies for PCT27A and the S0:4 progenies for PCT27B were phenotyped in two locations: Santa Rosa the target selection location, within the upland rice growing area, and Palmira, the surrogate location, far from the upland rice growing area but easier for experimentation. While the calibration used either one of the two sets phenotyped in one or two locations, the validation population was only the PCT27B phenotyped in Santa Rosa. Five scenarios of genomic prediction and 24 models were performed and compared. Training the prediction model with the PCT27B phenotyped in Santa Rosa resulted in predictive abilities ranging from 0.19 for grain zinc concentration to 0.30 for grain yield. Expanding the training set with the inclusion of the PCT27A resulted in greater predictive abilities for all traits but grain yield, with increases from 5% for plant height to 61% for grain zinc concentration. Models with the PCT27B phenotyped in two locations resulted in higher prediction accuracy when the models assumed no genotype-by-environment (G × E) interaction for flowering (0.38) and grain zinc concentration (0.27). For plant height, the model assuming a single G × E variance provided higher accuracy (0.28). The gain in predictive ability for grain yield was the greatest (0.25) when environment-specific variance deviation effect for G × E was considered. While the best scenario was specific to each trait, the results indicated that the gain in predictive ability provided by the multi-location and multi-generation calibration was low. Yet, this approach could lead to increased selection intensity, acceleration of the breeding cycle, and a sizable economic advantage for the program.
Mots-clés Agrovoc : Oryza sativa, sélection récurrente, phénotype, riz pluvial, génétique des populations, sélection, amélioration génétique, méthode d'amélioration génétique, génotype, anatomie végétale, technique de prévision, riz, gain génétique, génome
Mots-clés géographiques Agrovoc : Colombie
Mots-clés libres : Training set optimization, Genomic selection, Oryza sativa, Genotype-by-environment interaction
Classification Agris : F30 - Génétique et amélioration des plantes
U10 - Informatique, mathématiques et statistiques
Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques
Agences de financement hors UE : Centre de Coopération Internationale en Recherche Agronomique pour le Développement
Auteurs et affiliations
- De Verdal Hugues, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-1923-8575 - auteur correspondant
- Baertschi Cédric, Université de Montpellier (FRA)
- Frouin Julien, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0003-1591-0755
- Quintero Constanza, CIAT (COL)
- Ospina Yolima, CIAT (COL)
- Alvarez María Fernanda, CIAT (COL)
- Cao Tuong-Vi, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-7011-2003
- Bartholome Jérôme, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-0855-3828
- Grenier Cécile, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0001-5390-8344 - auteur correspondant
Source : Cirad-Agritrop (https://agritrop.cirad.fr/606908/)
[ Page générée et mise en cache le 2024-12-18 ]