Agritrop
Accueil

Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits

Larue Florian, Rouan Lauriane, Pot David, Rami Jean-François, Luquet Delphine, Beurier Grégory. 2024. Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits. Frontiers in Plant Science, 15:1393965, 13 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
fpls-15-1393965.pdf

Télécharger (1MB) | Prévisualisation

Url - autres données associées : https://github.com/GBeurier/GenomicPrediction_Frontier

Résumé : Introduction: Predicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects. Methods: In this study, we propose a type of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN) and compare it to two classical GP regression methods for their ability to predict an integrative trait of sorghum: aboveground fresh weight accumulation. We also suggest that the use of a crop growth model (CGM) can enhance predictions of integrative traits by decomposing them into more heritable intermediate traits. Results: The results show that CNN outperformed both LASSO and Bayes C methods in accuracy, suggesting that CNN are better suited to predict integrative traits. Furthermore, the predictive ability of the combined CGM-GP approach surpassed that of GP without the CGM integration, irrespective of the regression method used. Discussion: These results are consistent with recent works aiming to develop Genome-to-Phenotype models and advocate for the use of non-linear prediction methods, and the use of combined CGM-GP to enhance the prediction of crop performances.

Mots-clés Agrovoc : modélisation des cultures, génotype, modèle mathématique, rendement des cultures, réseau de neurones, adaptation aux changements climatiques, prévision de rendement, méthode statistique, génétique intégrative, technique de prévision, apprentissage machine, génomique

Mots-clés libres : Crop model, Deep Learning, Genomic selection, Genetic markers, Parameter estimation, Sorghum

Classification Agris : F30 - Génétique et amélioration des plantes
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques

Agences de financement hors UE : Agence Nationale de la Recherche, Bill and Melinda Gates Foundation

Projets sur financement : (FRA) Biomasse pour le futur

Auteurs et affiliations

Source : Cirad-Agritrop (https://agritrop.cirad.fr/610090/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-01-08 ]